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Abstract

Quantification of uncertainties in snow accumulation, snowmelt, and snow disappearance dates

Mark S. Raleigh

Chair of the Supervisory Committee:
Associate Professor Jessica D. Lundquist
Civil and Environmental Engineering

Seasonal mountain snowpack holds hydrologic and ecologic significance worldwide.
However, observation networks in complex terrain are typically sparse and provide minimal
information about prevailing conditions. Snow patterns and processes in this data sparse
environment can be characterized with numerical models and satellite-based remote sensing, and
thus it is essential to understand their reliability. This research quantifies model and remote
sensing uncertainties in snow accumulation, snowmelt, and snow disappearance as revealed
through comparisons with unique ground-based measurements.

The relationship between snow accumulation uncertainty and model configuration is
assessed through a controlled experiment at 154 snow pillow sites in the western United States.
To simulate snow water equivalent (SWE), the National Weather Service SNOW-17 model is
tested as (1) a traditional “forward” model based primarily on precipitation, (2) a reconstruction
model based on total snowmelt before the snow disappearance date, and (3) a combination of (1)

and (2). For peak SWE estimation, the reliability of the parent models was indistinguishable,
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while the combined model was most reliable. A sensitivity analysis demonstrated that the parent
models had opposite sensitivities to temperature that tended to cancel in the combined model.
Uncertainty in model forcing and parameters significantly controlled model accuracy.

Uncertainty in remotely sensed snow cover and snow disappearance in forested areas is
enhanced by canopy obstruction but has been ill-quantified due to the lack of sub-canopy
observations. To better quantify this uncertainty, dense networks of near-surface temperature
sensors were installed at four study areas (<1 km?®) with varying forest cover in the Sierra
Nevada, California. Snow presence at each sensor was detected during periods when
temperature was damped, which resulted from snow cover insulation. This methodology was
verified using time-lapse analysis and high resolution (15m) remote sensing, and then used to
test daily 500 m canopy-adjusted MODIS snow cover data. Relative to the ground sensors,
MODIS underestimated snow cover by 10-20% in meadows and 10-40% in forests, and showed
snow disappearing 12 to 30 days too early in the forested sites. These errors were not detected
with operational snow sensors, which have seen frequent use in MODIS validation studies.

The link between model forcing and snow model uncertainty is assessed in two studies
using measurements at well-instrumented weather stations in different snow climates. First,
representation of snow surface temperature (7) with temperature and humidity is examined
because T tracks variations in the snowmelt energy balance. At all sites analyzed, the dew point
temperature (7,) represented 7 with lower bias than the dry and wet-bulb temperatures. The
potential usefulness of this approximation is demonstrated in a case study where detection of
model bias is achieved by comparing daily 7,; and modeled 7;. Second, the impact of forcing
data availability and empirical data estimation is addressed to understand which types of data

most impact physically-based snow modeling and need improved representation. An experiment

www.manaraa.com



is conducted at four well-instrumented sites with a series of hypothetical weather stations to
determine which measurements (beyond temperature and precipitation) most impact snow model

behavior. Radiative forcings had the largest impact on model behavior, but these are typically

the least often measured.
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“Mountains should be climbed with as little effort as possible and without desire.
The reality of your own nature should determine the speed.
If you become restless, speed up.
If you become winded, slow down.
You climb the mountain in an equilibrium between restlessness and exhaustion.

Then when you are no longer thinking ahead,
each footstep isn’t just a means to an end but a unique event in itself.
This leaf has jagged edges.
This rock looks loose.
From this place the snow is less visible, even though closer.
These are things that you should notice anyway.

To live only for some future goal is shallow.
It’s the sides of the mountain that sustain life, not the top.
Here’s where things grow.”

-- Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance: An Inquiry into Values
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Chapter 1 Introduction

The “water towers of the world” [Viviroli et al., 2003] are mountainous regions where
orographically enhanced snowfall [Roe, 2005] and the resulting seasonal snowpack permit
storage of vast quantities of water relative to the lowlands [Viviroli et al., 2007]. Of interest are
the three “life-cycle” stages of a seasonal snowpack, that is, (1) accumulation, (2) melt, and (3)
disappearance, which influence downstream water resources (e.g., hydropower, water supply),
watershed hydrology, and ecology. About one-sixth of the global population lives where
mountain snowpack supplements reservoir storage and where snowmelt is the dominant
contributor to annual streamflow [Barnett et al., 2005]. Melting and disappearance of the
snowpack during also marks the beginning of the growing season for many local ecological
communities, which may impact species distribution [e.g., ribbon forests, Billings, 1969],
diversity [Litaor et al., 2008], and productivity [Trujillo et al., 2012]. Quantifying uncertainty in
tools that represent snow patterns and processes is therefore vital for understanding how the
“water towers” work and for projecting the range of hydrologic responses to changes in climate
and land cover. However, uncertainties in snow distributions and melt drivers are not often well
understood because of high spatial variability in snow [Scipion et al., 2013] and because ground-
based observations are sparse in complex terrain [Bales et al., 2006; Lundquist et al., 2003].

The goal of this dissertation is to provide new insights into the utility of models and
remote sensing to capture the magnitude of snow accumulation and melt and the timing of snow
disappearance through quantification of errors. With advances in high-performance computing
and the advent of satellite-borne remote sensing, the last three decades have witnessed continual
refinements in modeling techniques and remote sensing of seasonal snow characteristics across

different spatial and temporal scales [Nolin, 2010]. These tools have augmented the sparse
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ground observations to provide more complete spatial and temporal coverage, and permitted
predictions of future conditions. Dozier [2011] suggested that the snow research community
now has the ability to exploit “the fourth paradigm” [Hey et al., 2009], where large datasets from
models and remote sensing are leveraged to address science questions. This direction is worth
pursuing, but advances in ground-based observations have not kept pace with those in models
and remote sensing [Bales et al., 2006]. Therefore, the potential emerges for large model and
remote sensing datasets to be analyzed with only a vague sense of the embedded uncertainties.

Throughout this research, individual processes (i.e., snow accumulation, snowmelt, and
disappearance) from models or remote sensing are isolated and compared to ground-based
observations, which are assumed the most likely approximation of reality. However, it is critical
to note that no single method — ground observations, models, and remote sensing — lacks
uncertainty, and that these imperfect tools can only be compared to each other (Figure 1.1),
which is often complicated by differences in scale [Bloschl, 1999]. Several possible sources of
uncertainty are imbedded in the ground-based observations, ranging from measurement precision
[van den Broeke et al., 2004] to environmental errors [Huwald et al., 2009; Johnson and Marks,
2004; Sieck et al., 2007] to spatial representativeness [e.g., Molotch and Bales, 2006].
Uncertainty in the ground observations is considered via model sensitivity analysis and by
sampling large populations of ground observations whenever possible.

A central insight guiding the research is that accumulation, melt, and disappearance of
seasonal snow are strongly linked, and knowledge of two of these components permits
estimation of the third [Liston, 1999]. Consequently, uncertainties in one or two of the
components will propagate into estimation of the third. For example, using a traditional

“forward” running snow model, uncertainty in modeled snow disappearance is the result of

2

www.manaraa.com



uncertainties in snow accumulation and snowmelt [Shamir and Georgakakos, 2006]. Likewise,
snow disappearance timing information and calculated snowmelt can yield retrospective
estimates of maximum snow accumulation, in what has been called “snow water equivalent
(SWE) reconstruction” [Molotch and Bales, 2005; Rice et al., 2011]. However, work presented
in this dissertation and elsewhere [Slater et al., 2013] indicate that the uncertainty in SWE

reconstruction, particularly the model forcing and parameters, must be carefully considered.
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Figure 1.1 Representation of reality with ground observations, snow models, and remote
sensing. Major sources of uncertainty are shown in the shaded areas. The gray triangles indicate
that those methods sense reality, while the gray box indicates that models have no direct
connection to reality. Opportunities for partial confirmation [Oreskes et al., 1994] between
methods and models are indicated. The photograph is at the Tioga Pass entrance to Yosemite
National Park (courtesy of University of California San Diego).
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A thorough understanding of the uncertainties in modeled and remotely sensed snow data
is therefore critical to the successful use of these data. Through the course of this dissertation, a
variety of unique approaches are employed in order to achieve this overarching theme. Where
the data are available, the impact of snow climate and forest canopy on the uncertainty is

considered. Four research questions motivated this research:

1. Which configuration (i.e., forward, reconstruction, or a combined forward-
reconstruction approach) of a snow model yields the most robust estimates of SWE and
precipitation, given uncertainties in model forcing data and parameters?

2. What is the accuracy of snow disappearance timing derived from MODIS fractional
snow covered area at fine spatial scales (~1-2 km?) across sites with varying forest
density and topography?

3. Can standard height temperature and humidity approximate snow surface temperature,
so as to allow detection of bias in a snowmelt model?

4.  Given the scarcity of meteorological stations in mountains areas, which meteorological
forcings are most critical to measure for physically-based modeling of snow in different
climates?

The following chapters seek to address these four questions.

Chapter 2 [Raleigh and Lundquist, 2012] tests how different configurations of the same
snow model impact snow accumulation simulations to address Question 1. This chapter
primarily concerns uncertainties in snow accumulation using data from a network of 154 snow
pillow sites in the western U.S. for model forcing and evaluation. SWE is simulated with three
different configurations of SNOW-17 [Anderson, 1976], the operational snowmelt model of the
National Weather Service River Forecast Center. Snow disappearance and air temperature (the
primary forcing for snowmelt calculation) are assumed to be known, such that uncertainties in

precipitation and maximum SWE accumulation can be quantified. Sensitivity to forcing data and

model (i.e., structure, calibration, parameters) uncertainty are also explored and discussed.
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Chapter 3 [Raleigh et al., 2013c] develops a ground-based method for sampling snow
covered area with networks of distributed near-surface temperature sensors, and then uses this
approach to quantify errors in remotely sensed snow cover and snow disappearance in forest and
meadow sites to address Question 2. The investigation takes place during water years 2010 and
2011 in the Sierra Nevada, California (USA). Fractional snow covered area data from the
physically-based MODIS Snow Covered Area and Grain Size [MODSCAG, Dozier and Frew,
2009; Dozier et al., 2008; Painter et al., 2009] are corrected with a commonly employed forest
canopy correction, and then compared with the unique ground-based datasets from dense
networks of temperature sensors. This study provides unique quantification of forest effects on
remote sensing accuracy, and reports and discusses errors in remotely sensed snow cover and
snow disappearance that cannot be quantified with existing observational networks.

Chapter 4 [Raleigh et al., submitted 2013a] addresses Question 3 through an investigation
of how standard-height temperatures (i.e., dry-bulb, wet-bulb, and dew point) compare to
measured snow surface temperature (7) at seven different study sites. The motivation of this
study is to understand which standard temperature provides the most representative
approximation (i.e., least bias) of T, which is strongly linked to the surface energy balance of the
snowpack. The study is therefore related to the uncertainty in snowmelt, as snowmelt is
governed by energy exchanges at the snow surface. After assessing how the standard
temperatures compare to 7 and how these relationships change with atmospheric conditions and
climate, the study demonstrates the potential utility of improved surface temperature
approximation for detecting energy bias in snowmelt modeling.

Chapter 5 [Raleigh et al., in prep 2013b] addresses Question 4 by evaluating the response

of a physically-based snow model to data uncertainty and availability scenarios commonly
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encountered. The study’s goal is to identify the next “best” sensor to install at a weather station
that already measures temperature and precipitation, and to identify which forcings may be
adequately approximated with common methods. A series of data availability scenarios are
generated (i.e., “hypothetical weather stations”) and used to force a physically-based snow
model. The data availability scenarios employ common empirical methods for estimating
missing forcings. The sophisticated SNTHERM model [Jordan, 1991] is used to simulate
snowpack at four sites from contrasting snow climates. This experiment provides insights into
the importance of forcing data, and aims to provide guidance for future research.

When viewed from the context of global climate change, the research is particularly
relevant. Whether estimating historic distributions of snow or projecting future changes in
snowpack, a ubiquitous challenge is the uncertainty in model forcing. Modeling studies [e.g.,
Elsner et al., 2010] suggest that seasonal snowpack in regions with mild winter temperatures,
such as the Pacific Northwest (USA), is particularly sensitive to increasing temperature due to
climate change. These changes in mountain hydrology have direct implications for irrigated
agriculture [Vano et al., 2010], hydropower [Hamlet et al., 2002], aquatic habitat [Cristea and
Burges, 2009], and the winter recreation industry [Nolin and Daly, 2006]. Ecological
communities are also expected to shift or expire with earlier snow disappearance timing,
although the ecological response may be complex because the spatial variability of snow results
in microclimates that may create a buffer for some species [Ford et al., 2013]. Because
numerical models are used to inform natural resource managers and decision makers of
quantitative changes in future snowpack and snowmelt in the “water towers”, it is imperative that
model uncertainties during the historic period are assessed thoroughly from a diversity of

approaches.
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Chapter 2 Comparing and combining SWE estimates from the SNOW-17 model using
PRISM and SWE reconstruction

This chapter has been published in its current form in Water Resources Research [Raleigh and
Lundquist, 2012]. Permission has been granted for reproduction in this dissertation. Sections,

figures, tables, and equations have been renamed here, and some citations (e.g. papers in press)
may have been updated.

Abstract

Snow models such as SNOW-17 may estimate past snow water equivalent (SWE) using either a
forward configuration based on spatial extrapolation of measured precipitation, such as with the
Parameter Regressions on Independent Slopes Model (PRISM), or a reconstruction configuration
based on snow disappearance timing and back-calculated snowmelt. However, little guidance
exists as to which configuration is preferable. Because the two approaches theoretically have
opposite sensitivities to model forcing, combining (averaging) their SWE estimates may be
advantageous. Using 154 snow pillow sites located in maritime mountains of the western United
States, we compared forward, reconstruction, and combined configurations of a simplified
SNOW-17. We evaluated model errors in (1) annual precipitation and (2) peak SWE, and (3)
mean SWE errors during the accumulation and ablation seasons. We also conducted a separate
analysis to assess the sensitivity of peak SWE to biased forcing data and parameters. The
forward model had the greatest precipitation accuracy, while the combined model had the
greatest accuracy in peak SWE and SWE during the accumulation and ablation seasons. In
determining peak SWE, the forward and reconstruction models demonstrated opposite
sensitivities to errors in air temperature and model parameters, and the combined model
minimized errors due to temperature bias and parameter uncertainty. In basins with precipitation
gauges, we recommend PRISM for precipitation estimation and the combined model for SWE
estimation. In areas with high precipitation uncertainty, reconstruction is more viable. Accurate
model parameters dramatically improved reconstruction, so more work is needed to advance
parameter estimation techniques in complex terrain.

2.1 Introduction

Snow hydrologists often ask the fundamental questions, “What is the snow water
equivalent (SWE) at an ungauged location in a mountainous basin, and how does it change in
time?” These questions are important to hydrologists because understanding spatial distributions
of SWE is essential for constructing depletion curves [Homan et al., 2010; Luce et al., 1999]
which may be used to forecast seasonal runoff [Rango and Martinec, 1982]. The questions are

also important for understanding seasonal snowpack interactions with fine-scale ecology. The
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magnitude of peak SWE (and snow depth) is positively related to snowpack persistence [Liston,
1999], and these variables impact ecology, such as vegetation distributions [Barbour et al.,
1991], tree growth [Littell et al., 2008], and wildlife habitat [Millar and Westfall, 2010].

The answers to the above questions remain elusive because of extreme spatial variability
in snow properties [Elder et al., 1989] and observational networks are sparse in many
mountainous basins worldwide [e.g., California, USA: Lundquist et al., 2003; British Columbia,
Canada: M Miles and Associates, 2003; New Zealand: Weingartner and Pearson, 2001].
Furthermore, observation stations are typically located in flat clearings [Farnes, 1967], which
often report systematically higher SWE than the surrounding area [Griinewald and Lehning,
2011; Lee et al., 2005; Molotch and Bales, 2005]. Thus, the available observations are not likely
to accurately represent the true spatial distribution of SWE, especially in mountainous basins
with complex terrain and heterogeneous vegetation [Bloschl, 1999]. Researchers must either
collect more snow data (e.g., field surveys, remote sensing) or use models forced by other
information (e.g., terrain characteristics, precipitation, air temperature) to estimate SWE.

To expand SWE observations, intensive ground-based field surveys [e.g., Cline et al.,
2003; Molotch and Bales, 2005] have been conducted in relatively small areas over
discontinuous time periods. These surveys are uncommon because they rely on intense manual
labor operating in challenging terrain. Observations of SWE or snow depth have also been
provided by remote sensing, such as laser scanning technology [Griinewald et al., 2010; Prokop
et al., 2008] or scanning microwave radiometers [e.g., Dahe et al., 2006]. Despite the promise of
these remote sensing instruments, limitations remain. Laser scanning technology is not routinely
employed in most basins and microwave radiometers observe SWE in large footprints (e.g.,

0.5°), which are too coarse to resolve SWE variability in many basins. Passive remote sensing
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instruments (e.g., USGS/NASA Landsat, NASA MODIS, and ESA MERIS) provide global
observations of SCA but do not observe SWE or snow depth.

Because of these challenges, researchers are left to model SWE. To interpolate and
extrapolate SWE observations, studies around the northern hemisphere have utilized many
techniques, such as multivariate statistical methods [e.g., Anderton et al., 2004], probabilistic
approachesle.g., Skaugen, 2007], masked interpolation methods [e.g., Fassnacht et al., 2003],
global interpolation models [Ldpez-Moreno and Nogués-Bravo, 2006], and regression-trees
based on terrain characteristics [e.g., Elder et al., 1998]. Methods that rely on snow observations
alone may not accurately model SWE in areas above the highest observations [Rice et al., 2011],
so a deterministic snow model [e.g., Anderson, 1976] that simulates SWE time series based on
meteorological data (e.g., air temperature, precipitation) may be preferred. Two different
configurations of the same snow model may be employed to simulate SWE with time.

In the first configuration, off-line estimates of precipitation are input into the snow
model, which partitions the precipitation at each time step into rain and snow (typically with a
threshold air temperature), and stores snowfall accumulation as SWE. The model reduces SWE
when environmental conditions favor snowmelt. This precipitation-driven approach is common,
and we refer to it herein as the “forward” model (Figure 2.1a). If a gauge network exists nearby,
the off-line estimates of precipitation can be estimated with analytic mapping models (such as
the Parameter-elevation Regressions on Independent Slopes Model, PRISM [Daly et al., 1994]),
multivariate regression [Marquzhez et al., 2003], kriging[ Garen and Marks, 2005], inverse-
distance weighting [Gemmer et al., 2004], or truncated Gaussian filters [Thornton et al., 1997].

When few precipitation gauges are available in a mountainous basin, which is not uncommon,
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uncertainty increases in precipitation inputs [e.g., Tsintikidis et al., 2002] and this uncertainty
will propagate through the forward model [Shamir and Georgakakos, 2006].

With the second configuration, SWE is reconstructed by summing modeled snowmelt
backwards in time starting from the date of snow disappearance, in order to estimate how much
SWE must have existed before snowmelt commenced (Figure 2.1b). Herein, we refer to this
method as “reconstruction” [Molotch and Bales, 2005], though it has also been called the
“depletion method” [Cline et al., 1998; Rice et al., 2011]. Several members of the snow science
community (Appendix A) have selected reconstruction over forward modeling for various
reasons. First, reconstruction does not require precipitation observations to estimate peak SWE
in years when no snow accumulates after peak SWE. At a minimum, reconstruction requires air
temperature to calculate snowmelt, and air temperature may be more reliably estimated than
precipitation [Ninyerola et al., 2000]. Secondly, reconstruction incorporates observed snow
disappearance timing (Figure 2.1b), which provides additional information because it is
correlated with peak SWE and ablation season melt rates [Liston, 1999]. Thirdly, snow
disappearance timing observations are available for most basins worldwide from SCA products
derived from passive remote sensing imagery (e.g., Landsat, MODIS, and MERIS). Thus,
reconstruction is possible in most basins worldwide, regardless of the availability of precipitation
observations.

When estimating past SWE in locations that have nearby precipitation gauges, one must
decide to use either a forward model or reconstruction, but there has been little research to guide
this decision. Studies have independently examined the accuracy and sensitivity of forward
models [He et al., 2011a, 2011b; Shamir and Georgakakos, 2006] and reconstruction [Rice et al.,

2011; Slater et al., 2013], but no study has examined these together. The critical premise of
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reconstruction is that snowmelt can be modeled more accurately than snowfall with forward
modeling, but this hypothesis has not yet been tested. Additionally, if these models have
opposite sensitivities to model inputs or parameters (see Section 2.2), then a “combined model”
that averages SWE from forward and reconstruction models may reduce the likelihood of SWE
errors. No prior study has examined the hypothetical benefits of this type of combined model.

The purpose of this study is to compare the accuracy and sensitivity of three
configurations (forward, reconstruction, and combined) of the same snow model, in order to
provide guidance for selecting a model configuration to estimate SWE and precipitation. Two
specific questions are addressed: (1) Which model configuration (forward, reconstruction,
combined) is likely to produce the most accurate estimates of (a) annual precipitation, (b) peak
SWE, and (c) SWE during the accumulation and ablation seasons? (2) How sensitive are the
model configurations to biases in model data and parameters when estimating SWE?

To answer these questions, we employ a simplified version of SNOW-17 [Anderson,
1976] to calculate snow accumulation and ablation. We select a temperature-index model
because it only requires air temperature and precipitation data; an energy-balance approach
requires additional data (e.g., radiation, wind, humidity) which are not widely available in most
mountainous basins. We use air temperature, precipitation, and SWE data from 154 snow
pillows in the western U.S. to calibrate SNOW-17 and test the three model configurations.
Although these flat, clearing sites may not be representative of zonal or basin SWE, we use them
because they readily provide a large pool of SWE, air temperature, and precipitation data that
allow testing and comparison between the model configurations. In contrast, observations are

rarely available along sloped terrain [Pomeroy et al., 2003].
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In testing each model configuration, we only assume that air temperature and snow
disappearance timing data are known; the SWE data at each snow pillow site are used only for
cross-validation and do not inform model calibration or the mass balance simulation at that site.
For the forward model, we estimate precipitation using a PRISM precipitation map because
PRISM has been shown to produce smaller errors and less bias than other techniques [Daly et al.,
1994]. The methodology was developed here to reflect the likely data available to a researcher
who needs to estimate past SWE at ungauged locations.

2.2 Forward and reconstruction models: theory, limitations, and opportunities
Daily SWE time series with a forward snow model (Figure 2.1a) can be generalized as:

SWE, =Zn:A,—Zn:M, @.1)
t=1 t=1

where 7 is the n™

day of the water year (1 Oct — 30 Sept), A, is estimated daily snowfall
accumulation, M, is estimated daily snowmelt, and 7 is the timestep (days). At a minimum,
forward models require precipitation and air temperature data, as well as model parameters for

rain-snow threshold temperatures, snowmelt temperatures, and snowmelt factors.

In contrast, a SWE time series from a reconstruction model (Figure 2.1b) is:
SWE,=>'M,-> A, (2.2)
t=d t=d

where d is the date of snow disappearance (also known as the snow depletion or snow-free date,
or the final day of seasonal snow cover), and 7 is the day of interest, which, by definition, must
be before date d. The reconstruction model runs in reverse from date d to date n (Figure 2.1b).
Because the model runs in reverse during this time domain, calculated snowmelt increases
reconstructed SWE while snow accumulation decreases reconstructed SWE. At a minimum,

reconstruction requires air temperature data and the snow disappearance date, as well as model

12

www.manaraa.com



parameters for snowmelt temperatures and snowmelt factors. Precipitation data and rain-snow
threshold parameters are required by reconstruction when snow storms occur after day » (to the
right of t=n in Figure 2.1b). Many reconstruction studies have assumed no snowfall (i.e., A=0)
after a specified date in March or April (see Appendix A). This assumption was not made in this
study because total observed snow accumulation during the melt season was typically 10% of
peak SWE at the study sites, and in extreme cases, exceeded 35% of peak SWE.

Forward models are intuitive because they operate in the same direction as time, and are
practical because they can simulate past, current, or future conditions. Reconstruction models
are retrospective and can only simulate past SWE because they first require the snow to
disappear. Despite this limitation, reconstruction may yield the only viable estimate of past SWE
when precipitation distributions are unknown because it does not require precipitation data.
When using a temperature-index model, reconstruction will have comparable or improved
accuracy relative to a forward model, given accurate air temperature data, low uncertainty in
snow disappearance dates, and appropriate model parameters (see Section 2.4).

In practice, both models are impacted by errors in data and parameters, and these are
likely to impact SWE estimation. At ungauged locations, air temperature is commonly estimated
with a lapse rate, which may introduce error when not based on regional observations [Minder et
al.,2010]. Slater et al. [2013] reviewed a variety of studies that estimated air temperature and
summarized that errors of 1°C were typical across mid-elevations, and errors exceeding 1.5°C
were common when extrapolating data to high elevations. Precipitation biases of 10-50% may
occur when windy conditions cause gauge undercatch [e.g., Goodison et al., 1998], while
additional errors may arise during interpolation or extrapolation of gauge data across a basin

(e.g., PRISM or kriging). Snow cover from remote sensing may be inaccurate for various
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reasons, such as cloud cover, missing scenes, concealment by forest canopy, or if the spatial
scale of interest is smaller than the satellite instrument’s footprint [Dozier et al., 2008; Slater et
al., 2013]. For temperature-index models, uncertainty in model parameters at ungauged
locations may be large [He et al., 2011a].

In theory, forward and reconstruction models should exhibit varying sensitivities to
model data and parameters when estimating peak SWE (Table 2.1). One key observation to note
is that the models have opposite sensitivities to air temperature and to the model parameters,
though the magnitudes of these sensitivities should vary. Additionally, the bias in model
parameters depends on location and seasonal climate. For example, forward model estimates of
peak SWE are only sensitive to the snowmelt parameters in years when melt occurs before peak
SWE, while reconstruction is sensitive to rain-snow threshold parameters only when storms
bring rain and snow after peak SWE. Bias in air temperature may impact the forward model
through rain-snow partitioning [e.g., Minder et al., 2010; Moore and Owens, 1984], and
reconstruction through snowmelt rates [e.g., Minder et al., 2010; Richard and Gratton, 2001].
Minder et al. [2010] found that air temperature estimates with a warm bias may result in less
snowfall and greater snowmelt rates.

Therefore, forward and reconstruction models should have opposite sensitivities to
accumulation and ablation processes, presenting an opportunity where averaging their peak SWE
estimates may minimize the impact of biased data and/or parameters. We hypothesize that this
type of combined model is more likely to produce smaller SWE errors than either forward or

reconstruction models because averaging the opposing sensitivities will reduce the overall error.

2.3 Data

2.3.1 Observational sites and quality control
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The study was conducted at 154 snow pillows (Figure 2.2a) in the western U.S. maritime
ranges, including the Cascades of Washington and Oregon, the California Sierra Nevada, the
Blue Mountains of Oregon, the Pacific Northwest Coastal Range, and the California Klamath
Range. In these ranges, 85-95% of annual precipitation arrives between October and May
[Baker, 1944]. In the subalpine areas of these ranges, 50-67% of annual precipitation is snowfall
[Serreze et al., 1999], while 90-100% of alpine precipitation falls as snow [Kattelmann and
Elder, 1991; Smith and Berg, 1982]. Site elevations ranged from 685 m (snow transition zone)
to 3475 m (alpine zone); 42% of the study snow pillows were located below 1600m.

All study sites in Washington, Oregon, and California (east of the Sierra Nevada crest)
were drawn from the Natural Resources Conservation Service (NRCS) snowpack telemetry

(SNOTEL) network (http://www.wcc.nrcs.usda.gov/snow/). All California sites west of the

Sierra Nevada crest were selected from the California Department of Water Resources (CDWR)

network (http://cdec.water.ca.gov/), managed by the California Cooperative Snow Surveys.

Observations between water years 1996-2004 were considered in Washington and Oregon, and
between water years 1996-1998 in California; selection of these years was arbitrary. Peak SWE
observations ranged from 75mm to 2540 mm and annual precipitation ranged from 330mm to
5275mm over the study. All sites had daily observations of mean air temperature and SWE.
Precipitation data were available at all analysis sites except at 26 of the CDWR sites. Eight
additional CDWR precipitation gauges (Figure 2.2a, red stars) augmented the California data
pool. At sites with precipitation data, undercatch correction was not attempted because wind
speed data (not typically available) are required to correct undercatch for storage gauges [Sevruk,

1983], which are standard at SNOTEL sites.
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Daily air temperature, precipitation, and SWE data were quality controlled following
Meek and Hatfield's [1994] framework. Quality control flags were placed when values exceeded
limits (Table 2.2), and flagged data were either accepted or rejected based on visual inspection.
Temperature and precipitation time series from individual stations were also compared to
observations at neighboring stations to find anomalies. A station-year (i.e., one water year of
data at a single station) was discarded if there were four or more consecutive days of missing or
flagged data of any one variable during the observed snow season. Station-years were also
discarded if the snow disappearance date could not be determined from the SWE data. Data gaps
of less than four days in the temperature and SWE data were filled with interpolation from data
immediately before and after each gap, while no precipitation was assumed during these gaps.

After quality control, 388 station-years remained. 54 station-years (i.e., 18 stations, 3
water years each) were isolated for snow model calibration (see Section 2.4) and were not used
in evaluation statistics. This left 334 station-years (136 snow pillow sites) of data available for
the evaluation. 40 of these station-years were at the CDWR sites which lacked precipitation

data.

2.3.2 PRISM data
Output data from the Parameter-elevation Regressions on Independent Slopes Model

(PRISM) [Daly et al., 1994] were used to estimate precipitation for the forward model (see
Section 2.5). PRISM was selected because it is used widely to map precipitation in hydrologic
and ecological models. PRISM divides a digital elevation model into topographic facets based
on slope orientation and coastal proximity. For each topographic facet in a region, PRISM
develops elevation-based regressions with gauge observations, and estimates monthly and annual

grids of precipitation based on those regressions. Daly et al. [1994] reported mean absolute
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errors (MAE) of 10-17% in PRISM annual precipitation when using a 52 station network in
Oregon.
To estimate the 1971-2000 climatology of annual precipitation in the conterminous

United States, the PRISM climate group (www.prism.oregonstate.edu) created a 30-arcsec (800

m) “normals” product (Figure 2.2b) from observations at over 13,000 stations [Daly et al., 1994,
2008]. This product incorporates historical precipitation data or snow course data from most
major observational networks (e.g., SNOTEL, CDWR). Data from 114 of the 136 analysis sites
were used to produce the normals product [C. Daly, personal communication, 2010]. An
annually varying 2.5-arcmin (4 km) PRISM “analysis” product is also available; we compared
the two PRISM products but found that the normals product yielded improved results in our
study. Therefore, we only used the mean annual precipitation data from the 800m normals

product (henceforth called PRISM).

2.4 Snow accumulation and melt model
The snow accumulation and melt model used in this study was SNOW-17 [Anderson,

1976]. SNOW-17 is a single layer, temperature-index snow model used operationally by the
National Weather Service (NWS) for flood forecasting. SNOW-17 estimates SWE and outflow
(snowmelt + rain) at each time step. Although many past reconstruction studies (Appendix A)
used snow models that required net radiation to calculate snowmelt, our study sites generally
lacked radiation observations. Accordingly, we selected SNOW-17 because it required data
inputs (e.g., air temperature) that were available at our study sites, and because it has been shown
to simulate snowmelt as well as energy balance methods in some studies [Franz et al., 2008].
We simplified the SNOW-17 model for the sake of computational efficiency. Whereas

the full NWS SNOW-17 has 10 model parameters, our simplified version has only five. In the
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simplified version, the rain-on-snow melt, light rain melt, ground heat melt, liquid water holding
capacity, and heat deficit components of the full NWS SNOW-17 were deactivated. If the heat
deficit and liquid water holding routines were activated, reconstruction would have required an
iterative solution [Raleigh, 2009] because these routines are dependent on snowpack conditions
before that time step. With these routines deactivated, the simplified SNOW-17 could
reconstruct SWE without multiple iterations. We repeated the analysis using iterations with the
full NWS model, but found the results of the two versions were not significantly different at our
study sites. Thus, only the results from the simplified SNOW-17 were included here.

The five parameters used in the simplified SNOW-17 are listed in Table 2.3. Whereas
the full NWS model has a single threshold temperature to distinguish rain and snow, we used
two threshold temperature parameters (7, and 7,,;,) because mixed rain-snow storms are not
uncommon at many of our maritime sites. In conjunction with mean daily air temperature (7),
these two parameters were used to estimate the snowfall fraction (f;) of daily precipitation at each
snow pillow. All daily precipitation was assumed snow when 7; was less than or equal to the
Tsn0 parameter, all was rain when the 7, was greater than or equal to 7, parameter, and the
precipitation was a linear rain-snow mixture between those two parameters [U.S. Army Corps of
Engineers, 1956]. Snowfall was accumulated in the modeled snowpack while rainfall and melt
water passed through the snowpack without being stored.

The three remaining model parameters (MBASE, MFMIN, and MFMAX) were used to
calculate snowmelt. Snowmelt (M;) on day 7 was calculated as [Anderson, 1976]:

M, =MF, - (T, - MBASE) (2.3)
where, MF, is the daily-varying melt factor (mm °C"' day™), 7, is mean daily air temperature

(°C), and MBASE is the minimum air temperature (°C) for snowmelt (no melt when T,<MBASE).
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MF; is varied daily with a sinusoidal curve to reflect seasonal changes in net solar radiation, such
that MF, equals MFMIN on 21 Dec and MFMAX on 21 Jun [Anderson, 1976].

All five model parameters required calibration. 18 snow pillows were designated as
calibration sites and were selected on a regional basis (every 1° of latitude, with separate stations
on the east and west slopes, Figure 2.2a). The 18 calibration sites were excluded from the rest of
the study. Each site was independently calibrated using three water years of data. At each
calibration site, an optimization algorithm was used to find the single values of T, T}4in and
for MBASE, MFMIN, and MFMAX that produced the lowest root mean squared error (RMSE) in
snowfall accumulation and snowmelt, respectively. The resulting calibrated parameters (Table
2.3) were comparable to values reported in other SNOW-17 studies [e.g., Franz et al., 2008; He
et al., 2011a; Shamir and Georgakakos, 2006]. The study results exhibited sensitivity to the

model calibration. This is demonstrated in Section 2.6.4 and discussed further in Section 2.7.

2.5 Methods
Forward, reconstruction, and combined configurations of the simplified SNOW-17 model

were used to estimate annual precipitation and SWE at each study site (i.e., point scale). All
sites had snow pillows and most had precipitation gauges, which allowed evaluation of each
model configuration at each study site; local observations of SWE and precipitation were not
used as input into the model or the calibration. Figure 2.3 shows the assumptions made
regarding data availability at the study site (hereafter referred to as Site X) when estimating

precipitation (Px) and snow water equivalent (SWEx). These assumptions are described below.
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1.) To assess the models’ applicability in locations without precipitation gauges, we assumed
each study site (Site X) lacked a precipitation gauge and thus required estimation based
on observations (Py) at the closest gauge, Site Y. To estimate daily precipitation at Site
X, a precipitation multiplier (S) was used to uniformly increase or decrease Py, to account
for accumulation differences between locations, due to effects such as orographic

enhancement of precipitation [Roe, 2005].

2.) Observations of air temperature and snow disappearance timing were assumed available
at Site X. The annual snow disappearance date was provided by the snow pillow at Site
X and was assumed the first date with SWE=0 after peak SWE. We assumed these two
observations were available because point values may be observed easily with distributed
temperature sensors in applications outside of this study [e.g., Lundquist and Huggett,

2008; Lundquist and Lott, 2008].

3.) We assumed that the five snow model parameters from the nearest calibration station
(Section 2.4) could be transferred to Site X and were constant from year-to-year. This
assumption is tested in Section 2.6.5 to evaluate the errors associated with transferring

model parameters from regional calibration stations to study sites.

4.) We assumed sublimation, wind transfer, and avalanches were negligible at Site X and
thus did not require simulation. Model simulations in western Idaho suggest that
sublimation is a minor component of the mass balance, with an expected magnitude of

3% of peak SWE during wet years and 10% during dry years [Reba et al., 2011b]. Snow
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pillows (i.e. Site X) are typically located in flat clearings where mechanical

redistributions are minimal or non-existent [Farnes, 1967].

While the daily snowfall fraction and potential snowmelt were the same for each model
configuration, the key differences were the precipitation multiplier (S), the direction of the model
simulation (Figure 2.1), and the starting point of the forward and reconstruction models. These

differences impacted modeled precipitation and SWE, and are described further below.

2.5.1 Forward model
In the forward model, the PRISM mean annual precipitation map (Figure 2.2b) was used

to estimate the mean precipitation ratio between Site X and Site Y (Figure 2.3). For example, if
PRISM showed mean annual precipitation of 1500mm at the Site X pixel and 1000mm at the
Site Y pixel, then the multiplier used (Sprisp xy) to map daily observations from Site Y to Site X
would be 1.5. This common methodology is used in distributed models [e.g., Shamir and
Georgakakos, 2006; Smith et al., 2004] and mountain microclimate models [e.g., Running et al.,
1987].

Snowfall accumulation at Site X on day ¢ was estimated with the forward model as:
(AX,t )forward = (PY,t X fX,t )X SPRISM,XY (2.4)

where Py, was observed daily precipitation (mm) at the nearest offsite gauge (Site Y, Figure
2.3); fx was the snowfall fraction of precipitation at Site X, based on the transferred 7,,,, and
T4in parameters (see section 2.4); Sprisy.xy was the PRISM precipitation multiplier, Ppgisyx /
Pprismy. Sprisuxy Was constant between years, as it was the mean precipitation difference
between sites.

Each year’s precipitation (P,,,) at Site X was estimated with the PRISM multiplier as:
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(P = PY,ann X SPRISM,XY (2.5)

.ann ) forward

Combining equations (2.1), (2.3), and (2.4), the forward model estimated SWE as:

SWE, =" (P, X fx )X S prasss xy — 2 MF, X (T, — MBASE) (2.6)
=1 =1

2.5.2 Reconstruction model
We modeled snowfall accumulation (A) with the reconstruction model based on the mass

balance across the snow season. Every year at Site X, total snowfall must equal total snowmelt

(equation (2.3)) over the course of the snow season (neglecting other mass transfers):
d d
S seconr X 2 fiPrs = 2, MF, X (Ty,, — MBASE) 2.7)
t=c t=c

where, S,.conxy 1S an annually and spatially varying multiplier that relates mass outflow (i.e.,

snowmelt) to mass inflow (i.e., unadjusted snow accumulation) at Site X, r=c denotes the first

day of continuous snow cover modeled at Site X, and d is the observed snow disappearance date.
During each year, S,econxy Was solved in equation (2.7) and then used to model snowfall

accumulation at Site X on day ¢ with the reconstruction model:
(AX,t)recon = (PY,t XfX,t)XSremn,XY (28)

This addition to the reconstruction model permitted SWE modeling across the entire snow

season and allowed estimation of annual precipitation with SWE reconstruction:
(PX ,ann )recon = PY,ann X Srecon,XY (29)

Combining equations (2.2), (2.3), and (2.8), the SWE reconstruction method was

finalized as:

d d
SWE, = Z MF, x (T, , — MBASE) - z (B, X fy)XS eomxr (2.10)

t=n t=n
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While Spgisy could have been used in the SWE reconstruction model (Equation 2.10) in place of
Srecon, We found that Spgssyr did not improve SWE reconstruction (no results shown). We include
Srecon here to assess the accuracy of a basic approach of backing out precipitation from the

snowpack mass balance (Equations 2.7 and 2.9).

2.5.3 Combined model
Annual precipitation and SWE were estimated with the combined model as:
Pr ) prra * Prann)
_ -ann / forward ~>ann Jyrecon
(PX ann )combined - 2 (2 1 1)
swi_ = WE. A+ SWE, 2.12)

2.5.4 Sensitivity analysis
The study was designed to represent a best case scenario for the model configurations. In

practice, it is common that air temperature at Site X (Figure 2.3) is not observed and must be
estimated from data at other stations. Snow disappearance timing is most readily observed with
remote sensing, which is also subject to various errors (see Section 2.2). The study was further
idealized because the PRISM map was trained by past data at 114 of the 136 study sites, so
PRISM accuracy was likely maximized. Because biases in model inputs and parameters should
impact the models differently (Table 2.1), a sensitivity analysis (section 2.6.4) was conducted to
quantify the impact of biases in model input data (air temperature, precipitation, and snow
disappearance timing) and model parameters (rain/snow delineation, melt threshold temperature,
melt factors) on peak SWE. This was accomplished by introducing independent, artificial biases

in each data input and model parameter, and observing the changes in peak SWE accuracy.

23

www.manaraa.com



2.6 Results

2.6.1 Annual precipitation
Estimates of annual precipitation were compared to the uncorrected, on-site precipitation

observations. The most accurate estimates of annual precipitation were associated with the
forward model (i.e., PRISM). While median errors (Table 2.4) in annual precipitation from the
three models were similar, the reconstruction and combined models had a higher frequency of
larger errors as seen in Figure 2.4a. The reconstruction and combined models had larger errors
in precipitation because of errors associated with transferring the five model parameters (see
Section 2.6.5). Figure 2.4b presents the results as cumulative probability distributions and
demonstrates that the forward model generally yielded smaller errors than the other two models.
The reconstruction approach of estimating annual precipitation (equation (2.9)) was twice as
likely as the forward model to produce an annual precipitation error exceeding 10%, and nearly
12 times as likely to produce an error exceeding 50% (Figure 2.4b). Not surprisingly, the

combined model results fell between the extremes of the forward and reconstruction models.

2.6.2 Peak SWE
Median peak SWE errors (Table 2.4) from the three models were not significantly

different and had negative biases (Figure 2.4c). The negative bias for the forward model may be
indicative of the median measurement error due to undercatch. The combined model was more
likely to produce smaller peak SWE errors than either the forward or reconstruction models
(Figures 4c and 4d). The forward and reconstruction models consistently demonstrated similar
probabilities of absolute errors (Figure 2.4d); this indicated that neither approach was statistically

preferable for modeling SWE at the study sites. The forward and reconstruction models were
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each 1.2 times as likely as the combined model to produce a peak SWE error exceeding 10%,

and 3.2 times as likely to produce an error exceeding 50% (Figure 2.4d).

2.6.3 SWE during the accumulation and ablations seasons
To understand the accuracy of SWE estimation during specific seasons, mean absolute

errors (MAE) in modeled SWE were recorded during each accumulation and ablation season.
Seasonal errors were assessed because peak SWE errors (Figure 2.4d) may not be useful for
seasonal-specific applications, such as development of snow depletion curves for the ablation
season. During the accumulation season, the forward and reconstruction models produced
similar MAE (Figure 2.5 and Table 2.4) while the combined model produced lower MAE.
During the ablation season, the forward model had significantly higher MAE, while the
reconstruction and combined model had similar MAE (Figure 2.5). Forward model errors were
greater during the ablation season because errors from the accumulation season were carried over
to the ablation season. This caused major errors in estimated snow disappearance timing with
the forward model; 65% of the forward simulations had at least a 7 day error in snow

disappearance.

2.6.4 Sensitivity of results to model inputs and parameters
The sensitivity analysis (Figure 2.6) confirmed the expectations of Table 2.1. As seen in

Figure 2.6a, the forward (reconstruction) model SWE error was negatively (positively) correlated
with air temperature bias. The combined model was significantly less sensitive to air
temperature errors because averaging overestimation and underestimation errors from the
forward and reconstruction models resulted in median SWE errors closer to zero (Figure 2.6a).

This implied that some SWE errors in the original analysis (no artificial bias) may have been the
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result of errors in the observational air temperature data and/or the model calibration. As
hypothesized, these errors tended to cancel out in the combined model.

The reconstruction model was insensitive to precipitation bias (Figure 2.6b) while
forward model SWE errors were directly proportional to the introduced precipitation bias.
Although our formulation of the SWE reconstruction method (equation (2.10)) included
precipitation to allow modeling across the entire snow season, it was insensitive to precipitation
bias. This was explained by the multiplier development. For example, a precipitation bias of -
50% (i.e., 0.5Py) would increase S,.con by a factor of 2 in equation (2.7), which would cancel the
same -50% Py bias in equation (2.10). This also explained why errors in reconstructed SWE
during the accumulation season were not large (Figure 2.5), despite having large annual
precipitation errors (Figure 2.4a).

The forward model was independent of biases in snow disappearance timing by
definition. When reconstructing peak SWE, there was an average additional error of 4.3% for
every 1 day of snow disappearance date bias (Figure 2.6c). This error is similar in magnitude to
the results of Slater et al. [2013], who reconstructed SWE with an idealized snow model at
SNOTEL stations across the conterminous United States.

When estimating peak SWE, the forward and reconstruction models had opposite
sensitivities to the model parameters (Figures 6d, 6e, and 6f), but the magnitudes of their
sensitivities varied. The forward model was more sensitive to the rain-snow threshold
temperatures (7., and T,4,) than the reconstruction model (Figure 2.6d) because the forward
model peak SWE is dependent on snowfall accumulation (Equation 2.1). Likewise, the
reconstruction model had greater sensitivity to bias in the snowmelt threshold temperature

(MBASE) and the snowmelt factors (MFMIN and MFMAX), because reconstructed peak SWE
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was primarily a function of calculated snowmelt (Equation 2.2). The reconstruction model’s
sensitivity to MFMAX (Figure 2.6f) was comparable to the forward model’s sensitivity to

precipitation bias (Figure 2.6b).

2.6.5 Parameter transfer accuracy
The assumption that model parameters could be transferred (Section 2.5) was checked by

running the calibration optimization routine (Section 2.4) at each study snow pillow during all
available water years, such that a unique set of five parameters was developed on-site for each
station-year. These on-site parameters were considered as the best-case calibration for each
station-year and eliminated any errors associated with transferring parameters from the regional
calibration stations. Figure 2.7 displays the results of this analysis, and generally shows that
reconstruction benefited the most from improved model parameters. For annual precipitation
(Figures 7a and 7c), the reconstruction and combined models demonstrated increased accuracy
with on-site parameters, while the forward model accuracy was unchanged because the forward
model’s estimates of annual precipitation were independent of the snow model parameters. Peak
SWE accuracy dramatically increased for reconstruction when on-site parameters were used
(Figures 7b and 7d). With the forward and combined models, SWE accuracy increased only
slightly with on-site calibration (Figures 7b and 7d). Consequently, reconstruction became the

most accurate peak SWE estimator when improved model parameters were available (Figure

2.7b).

2.7 Discussion

2.7.1 Summary of key findings
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This study answered the two study questions: (1) When transferring model parameters
(Figure 2.3), the PRISM-forced forward model generally estimated annual precipitation with the
greatest accuracy, while the combined model typically estimated SWE with the greatest accuracy
(Figures 4 and 5). (2) As expected for peak SWE estimation, the combined model was least
sensitive to air temperature errors (Figure 2.6a) and reconstruction was least sensitive to
precipitation errors (Figure 2.6b). The forward model was most sensitive to the rain-snow
parameters (Figure 2.6d), while the reconstruction model was most sensitive to the melt
threshold temperature (Figure 2.6e) and the melt factors (Figure 2.6f); the combined model was
less sensitive in those cases. In practice, uncertainty will exist in all model parameters and data,
and the results here suggest that the combined model may yield the lowest overall sensitivity to
uncertainty.

When transferring model parameters, the likelihood of errors in peak SWE was nearly
identical for the forward and reconstruction models (Figure 2.4d), and thus the accuracy of
estimating snowfall during the accumulation season was comparable to the accuracy of
estimating snowmelt during the ablation season. While this result did not support the implicit
premise of reconstruction, that snowmelt can be estimated more accurately than snowfall, it
implies that both approaches may be equally viable, given reasonable input data (Figure 2.3).
With similar distributions of peak SWE errors, the combined model improves accuracy at
locations where one model (forward or reconstruction) overestimates peak SWE and the other
underestimates peak SWE. This overestimation-underestimation situation, which is
characteristic of errors in air temperature and model parameters (Figure 2.6a, 6d-f), occurred in
58% of the station-years (n=334). The combined model improved SWE estimation (Figure 2.4c)

in 62% of those cases. By construction, the combined model could never produce the largest
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error at any given station-year because it was the average of the other two model estimates. This
guarantees that the combined model will always estimate peak SWE more accurately than at
least one of the two models, a useful feature when uncertainty exists in the forcing data and
parameters of both forward and reconstruction models. Thus, the combined model will estimate
SWE distributions more reliably than both the forward and reconstruction models only if those
models have similar overall accuracy, which is the case here (Figures 4c and 4d).

Because the forward and reconstruction models produced overestimation and
underestimation errors at various station-years, it was evident that errors in observed air
temperature and/or transferred model parameters must have corrupted the models’ estimates of
peak SWE. This was demonstrated with the forward model, which had high accuracy in annual
precipitation in the original analysis (Figure 2.4a), and lower accuracy when estimating peak
SWE (Figure 2.4c). The forward model underestimation of peak SWE may be partially
attributed to gauge undercatch, as the -8.9% median error was in the range of the -4.8% to -9.5%
mean undercatch errors reported in the study area [Serreze et al., 1999]. Errors in air
temperature and model parameters limited the accuracy of reconstruction as well, as the accuracy
of the reconstruction model dramatically increased with on-site calibration (Figure 2.7d), which
corrected errors in model parameters and compensated for bias (if any) in observed temperature.

Given improved (on-site) calibration parameters, the initial premise of reconstruction was
supported, as the ablation season was simulated more accurately than the accumulation season
(Figure 2.7b). Because the forward model gained little improvement in peak SWE accuracy with
on-site calibration, we found that the rain-snow partitioning parameters (74, and T,,,,) were
difficult to calibrate with accuracy, but placed a major control on model performance. Optimal

parameters for snowmelt (MBASE, MFMIN, MFMAX) improved reconstructions of peak SWE
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(Figure 2.7d), but in practice, the problem of deriving these optimal parameters remains [He et
al.,2011a]. Until research demonstrates improved parameter transferability and estimation,
errors in the model parameters are likely to be comparable to those in the original analysis,
where the combined model produced more accurate peak SWE estimates (Figures 4b and 4d).
Parameter transferability presents a significant obstacle to temperature-index models, and
energy balance models are often advocated as an alternative. However, energy balance models
may have large uncertainties in data inputs and also have multiple parameters which must be
estimated or transferred. A complete energy balance model might have 25 or more terms of
potential uncertainty [see Table 7 of Marks and Dozier, 1992], whereas the simplified SNOW-17
reconstruction model had a total of seven terms of uncertainty (air temperature, snow
disappearance timing, and the five model parameters). Even if a simple energy balance model is
employed, uncertainty in the radiative terms alone (on the order of 10-40 W m) may exceed the
data uncertainty for a model like SNOW-17 [Slater et al., 2013]. Most energy balance models
simulate the required inputs (e.g., radiation, humidity) through empirical relationships [e.g.,
Waichler and Wigmosta, 2003] that are defined by parameters. These parameterized empirical
equations must be transferred as well, and therefore parameter transfer is an inescapable issue for

all types of snow models.

2.7.2 Guidelines for model selection
The purpose of this study was to evaluate the models’ accuracy and sensitivity, in order

to understand which should be employed in practice. The guidelines derived from the study’s
results are summarized below and depend on data availability and the user’s objectives.
1. If areliable precipitation gauge network exists near the study basin, then PRISM (or a

comparable data interpolation method) should be used to estimate precipitation (Figures 4a and
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4b). However, the combined model should be employed to estimate peak SWE (Figures 4c and
4d), especially in the context of data and parameter uncertainty (Figure 2.6). Both the combined
and reconstruction models are preferred over the forward model when developing snow

depletion curves that relate SCA and SWE in the basin during the snowmelt season (Figure 2.5).

2. If a basin with a precipitation gauge network has high uncertainty in remotely sensed
snow disappearance timing (e.g., cloudy conditions during the snowmelt season or infrequent
sampling), then the forward model should be considered to estimate peak SWE (Figure 2.6¢).

3. If the precipitation gauge network is sparse or non-existent, then SWE reconstruction
should be employed because it is likely to produce similar errors as a forward model driven by
PRISM (Figures 4c and 4d). A crude estimate of spatially-distributed precipitation (Figures 4a
and 4b) may be backed out using the reconstruction method with equations (2.7) and (2.9) if at
least one precipitation gauge exists in the area.

4. In all cases, the accuracy of SWE estimation will vary with the spatial scale of
interest. For example, when estimating peak SWE across all station-years (n=334), the median
bias was relatively small for all three models (Table 2.4). This implies that when aggregating
SWE estimates over a large spatial scale (e.g., a basin), any of the three models might have skill
in estimating mean areal SWE, but at any one specific point location (e.g., an ecological study
site), there is a high probability of producing an error that exceeds the median bias. The median
bias was less than 10% for all three models, but 65% of the combined model simulations and

77% of the forward and reconstruction simulations exceeded 10% error (Figure 2.4d).

2.7.3 Representativeness of the results
The accuracy and sensitivity of model configurations were evaluated here at flat clearings

located at mid-elevations in maritime mountain ranges, so the results are most applicable to sites
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with similar characteristics and climate. These sites can be found worldwide (e.g., New Zealand,
Japan, eastern Russia, northwest Europe, Chile, and southwestern British Columbia). Modeling
SWE in these other areas may inevitably demand inclusion of other (scale-dependent) processes,
discussed further below, which did not require representation at the study sites.

Forested and sloped regions present additional uncertainties in all three models. The
forward model may need to represent canopy interception and sublimation dynamics, and this
could introduce additional uncertainty in SWE estimation. Likewise, the forest canopy may
introduce uncertainty in the date of snow disappearance, which increases reconstruction
uncertainty. The forest canopy also places a major control on snowmelt dynamics by reducing
incident shortwave radiation and reducing turbulent energy transfer, and the representation of
these processes in a model requires the estimation of many additional model parameters [e.g.,
Storck, 2000]. Terrain aspect also controls snowmelt energy, although to a lesser extent than
forest canopy [Coughlan and Running, 1997]. Additional work is needed to develop techniques
for estimating model parameters at sloped and forested sites [Rutter et al., 2009].

Due to the study’s location (maritime mountains of the western U.S.), 10% of the SWE
simulations were at sites located below 1000m, and nearly 50% were at sites below 1600m.
Thus, the results presented here are most representative of sites in or just above the snow
transition zone, where winter air temperatures are mild, and mixed rain/snow storms and mid-
winter snowmelt events are common [Marks et al., 1998]. In this zone, the forward model’s
sensitivities to air temperature and rain-snow threshold parameters are high, which provides
more incentive to use the combined model. At higher elevations, alpine regions, and colder
continental climates, all winter precipitation falls as snow. In these locations the forward model

may be less sensitive to air temperature, and estimates of snowfall will be impacted more by
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precipitation extrapolation errors. However, wind transfer and sublimation have larger impacts
on the mass balance in these regions [Marks and Dozier, 1992] and may require representation.
Because the analysis focused on snow pillow sites, this study showed results under an
ideal scenario for data inputs (Figure 2.4) and model parameters (Figure 2.7). In reality, the data
inputs, precipitation multipliers, and model parameters will have increased uncertainty when
estimating SWE at ungauged locations. With heightened uncertainty in all model forcings
(Figure 2.6), the results show that the combined model will reduce the magnitude of bias in peak

SWE because of compensating errors (Table 2.1).

2.8 Conclusions
When estimating precipitation and SWE at study locations (assuming only air

temperature and snow disappearance timing are known), the selection of a model configuration
(i.e., forward, reconstruction, or combined) depends on the density and quality of the
precipitation gauge network, the uncertainty of the model inputs and parameters, and the user’s
objectives. Precipitation-based studies should be guided by PRISM or similar off-line
precipitation modeling (no snow model necessary). Ablation-specific studies [snowmelt
depletion curves, e.g., Homan et al., 2010; Lee et al., 2005] should utilize either reconstruction
or a combined model (Figure 2.5).

A snow model yields different estimates of peak SWE depending on the model
configuration (forwards or reconstruction), partly because each configuration is uniquely
sensitive to errors in model data and parameters (Figure 2.6). The quality of the forward and
reconstruction estimates cannot be known when estimating peak SWE at an ungauged point
location (e.g., an ecological plot) because the magnitude and sign of the errors in the data and

parameters are unknowable. However, the simple averaging of the forward and reconstruction
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estimates of peak SWE in the combined model may yield the most reliable estimate at point
locations because the contrasting sensitivities of the models tend to minimize overall sensitivity
to errors in data and parameters. Based on our evaluation at snow pillow locations in the
maritime region of the mountainous western U.S., forward and reconstruction configurations
have comparable accuracy, and so we recommend the combined configuration in this region.

When estimating SWE over larger domains (e.g., zonal areas of a basin) for subsequent
streamflow analysis, the three configurations may yield similar SWE estimates when averaged
across the basin, but may produce contrasting SWE estimates in each zone. Similar mean SWE
estimates will not change the seasonal flow volume, but the distribution of SWE across the zones
will impact streamflow timing. The combined model acts to eliminate large SWE errors (Figure
2.4c) in these zones and therefore may improve estimation of streamflow timing.

Improving snow model parameterization and transfer remains a challenging research
endeavor, but is nevertheless important because model parameterization places a fundamental
control on model accuracy, as demonstrated in this study. Accurate snow model parameters may
dramatically improve estimates of annual precipitation and SWE with reconstruction (Figure
2.7).

Because the study was restricted to flat clearings in the maritime zone, additional
investigation is needed to compare the model configurations in areas with varying slope, aspect,
and forest cover and in different snow regimes and climates. If snow models are to represent
fine-scale spatial variations in SWE in these areas, they must accurately model the associated
accumulation and ablation processes. Snow and meteorological data are not routinely collected
along slopes and under forest ca